Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle ∫ ((x+1)2/x(x2+1)) dX is equal to
Q.
∫
x
(
x
2
+
1
)
(
x
+
1
)
2
dX is equal to
8001
165
KEAM
KEAM 2015
Integrals
Report Error
A
l
o
g
∣
∣
x
(
x
2
+
1
)
∣
∣
+
C
33%
B
l
o
g
∣
x
∣
+
C
0%
C
l
o
g
∣
x
∣
+
2
t
a
n
−
1
x
+
C
67%
D
l
o
g
(
1
+
x
2
1
)
+
C
0%
E
2
l
o
g
∣
x
∣
+
t
a
n
−
1
x
+
C
0%
Solution:
Let
I
=
∫
x
(
x
2
+
1
)
(
x
+
1
)
2
d
x
=
∫
x
(
x
2
+
1
)
x
2
+
1
+
2
x
d
x
=
∫
x
(
x
2
+
1
)
x
2
+
1
d
x
+
∫
x
(
x
2
+
1
)
2
x
d
x
=
∫
x
1
d
x
+
2
∫
x
2
+
1
1
d
x
=
lo
g
∣
x
∣
+
2
tan
−
1
x
+
C