Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle \int \frac{\left(x+1\right)^{2}}{x\left(x^{2}+1\right)}$ dX is equal to

KEAMKEAM 2015Integrals

Solution:

Let $ I =\int \frac{(x+1)^{2}}{x\left(x^{2}+1\right)} d x $
$=\int \frac{x^{2}+1+2 x}{x\left(x^{2}+1\right)} d x $
$=\int \frac{x^{2}+1}{x\left(x^{2}+1\right)} d x+\int \frac{2 x}{x\left(x^{2}+1\right)} d x$
$=\int \frac{1}{x} d x+2 \int \frac{1}{x^{2}+1} d x $
$=\log |x|+2 \tan ^{-1} x+C$