Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle ∫ (ln (x + 1) - ln â¡ x/x (x + 1))dx is equal to (where C is an arbitarary constant)
Q.
∫
x
(
x
+
1
)
l
n
(
x
+
1
)
−
l
n
x
d
x
is equal to (where
C
is an arbitarary constant)
1756
224
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
−
2
1
(
[
l
n
(
x
x
+
1
)
]
)
2
+
C
33%
B
C
−
[
(
{
l
n
(
x
+
1
)
}
)
2
−
(
l
n
x
)
2
]
67%
C
−
l
n
[
l
n
(
x
x
+
1
)
]
+
C
0%
D
−
l
n
(
x
x
+
1
)
+
C
0%
Solution:
Put
l
n
(
x
+
1
)
−
l
n
x
=
t
⇒
x
+
1
1
−
x
1
=
d
x
d
t
⇒
x
(
x
+
1
)
x
−
(
x
+
1
)
=
d
x
d
t
⇒
x
(
x
+
1
)
−
d
x
=
d
t
⇒
x
(
x
+
1
)
d
x
=
−
d
t
so question becomes
−
∫
t
d
t
=
−
2
t
2
+
C