Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle \int \frac{ln \left(x + 1\right) - ln ⁡ x}{x \left(x + 1\right)}dx \, $ is equal to (where $C$ is an arbitarary constant)

NTA AbhyasNTA Abhyas 2020Integrals

Solution:

Put $ln \left(x + 1\right)-ln ⁡ x=t$
$\Rightarrow \, \frac{1}{x + 1}-\frac{1}{x}=\frac{d t}{d x}\Rightarrow \, \frac{x - \left(x + 1\right)}{x \left(x + 1\right)}=\frac{d t}{d x}$
$\Rightarrow \, \frac{- d x}{x \left(x + 1\right)}=dt\Rightarrow \, \frac{d x}{x \left(x + 1\right)}=- \, dt$
so question becomes
$- \, \displaystyle \int ‍t \, dt=-\frac{t^{2}}{2}+C$