Q.
Discuss the continuity of the function f(x)=sin2x−1 at the point x=0, and x=π .
9057
214
J & K CETJ & K CET 2014Continuity and Differentiability
Report Error
Solution:
Given, f(x)=sin2x−1 At x=0,x→0−limf(x)=h→0limf(0−h) =h→0lim[−sin2h−1] =0−1=−1x→0+limf(x)=h→0limf(0+h) =h→0limsin2h−1 =0−1=−1 and f(0)=sin0−1=−1∵x→0−limf(x)=x→0+limf(x)=f(0) ∴f(x) is continuous at x=0 Now, at x=πx→π−limf(x)=h→0limf(π−h) =h→0limsin2(π−h)−1 =h→0lim−sin1h−1=−1x→π+limf(x)=h→0limf(π+h) =h→0limsin2(π+h)−1 =h→0limsin2h−1 =0−1=−1 and f(π)=sin2π−1=−1∵x→π−limf(x)=x→π+limf(x)=f(π) ∴f(x) is continuous at x=π also.