Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Discuss the continuity of the function f(x)= sin 2x-1 at the point x=0, and x=π .
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Discuss the continuity of the function $ f(x)=\sin 2x-1 $ at the point $ x=0, $ and $ x=\pi $ .
J & K CET
J & K CET 2014
Continuity and Differentiability
A
Continuous at $ x=0,\,\pi $
80%
B
Discontinuous at $ x=0 $ but continuous at $ x=\pi $
8%
C
Continuous at $ x=0 $ but discontinuous at $ x=\pi $
7%
D
Discontinuous at $ x=0,\,\pi $
5%
Solution:
Given, $ f(x)=\sin \,2x-1 $ At $ x=0, $ $ \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\,\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\,f(0-h) $
$=\underset{h\to 0}{\mathop{\lim }}\,\,[-\sin \,2h-1] $
$=0-1=-1 $ $ \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\,f(0+h) $
$=\underset{h\to 0}{\mathop{\lim }}\,\,\,\sin \,2h-1 $
$=0-1=-1 $ and $ f(0)=sin0-1=-1 $ $ \because $ $ \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\,\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\,f(x)=f(0) $
$ \therefore $ $ f(x) $ is continuous at $ x=0 $ Now, at $ x=\pi $ $ \underset{x\to {{\pi }^{-}}}{\mathop{\lim }}\,\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,f(\pi -h) $
$=\underset{h\to 0}{\mathop{\lim }}\,\,\sin 2(\pi -h)-1 $
$=\underset{h\to 0}{\mathop{\lim }}\,\,\,-\sin 1h-1=-1 $ $ \underset{x\to {{\pi }^{+}}}{\mathop{\lim }}\,\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\,f(\pi +h) $
$=\underset{h\to 0}{\mathop{\lim }}\,\sin 2(\pi +h)-1 $
$=\underset{h\to 0}{\mathop{\lim }}\,\,\,\sin 2h-1 $
$=0-1=-1 $ and $ f(\pi )=\sin \,2\pi -1=-1 $ $ \because $ $ \underset{x\to {{\pi }^{-}}}{\mathop{\lim }}\,\,f(x)=\underset{x\to {{\pi }^{+}}}{\mathop{\lim }}\,\,\,f(x)=f(\pi ) $
$ \therefore $ $ f(x) $ is continuous at $ x=\pi $ also.