Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
cos (α-β)=1 and cos (α+β)=(1/e), where α, β ∈[-π, π]. Number of pairs (α, β) which satisfy both the equations is/are
Q.
cos
(
α
−
β
)
=
1
and
cos
(
α
+
β
)
=
e
1
, where
α
,
β
∈
[
−
π
,
π
]
. Number of pairs
(
α
,
β
)
which satisfy both the equations is/are
513
159
Trigonometric Functions
Report Error
A
0
B
1
C
2
D
4
Solution:
α
−
β
=
0
,
−
2
π
or
2
π
α
−
β
=
0
⇒
α
=
β
⇒
cos
2
β
=
e
1
This is true for ' 4 ' values of '
α
', '
β
'
If
α
−
β
=
−
2
π
⇒
α
=
−
π
and
β
=
π
and
cos
(
α
+
β
)
=
1
⇒
(No solution)
similarly if
α
−
β
=
2
π
⇒
α
=
π
and
β
=
−
π
again no solution results