Let 72πr=θ ⇒2πr=3θ+4θ ⇒4θ=2πr−3θ ⇒sin4θ=sin(2πr−3θ) ⇒sin4θ=−sin3θ ⇒2sin2θcos2θ=−[3sinθ−4sin3θ] ⇒2×2sinθcosθ(2cos2θ−1)=−3sinθ+4sin3θ ⇒sinθ[8cos3θ−4cosθ+3−4(1−cos2θ)]=0 ⇒8cos3θ+4cos2θ−4cosθ−1=0
Thus, cos72π,cos74π and cos76π are the roots of the above equation. ∴cos72π+cos74π+cos76π=−21