Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
cos (2π/7)+ cos (4π/7)+ cos (6π/7)
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $\cos \frac{2\pi}{7}+\cos \frac{4\pi}{7}+\cos \frac{6\pi}{7}$
WBJEE
WBJEE 2014
Trigonometric Functions
A
is equal to zero
20%
B
lies between 0 and 3
31%
C
is a negative number
32%
D
lies between 3 and 6
17%
Solution:
Let $\frac{2 \pi r}{7}=\theta$
$\Rightarrow 2 \pi r=3 \theta+4 \theta$
$\Rightarrow 4 \theta=2 \pi r-3 \theta$
$\Rightarrow \sin 4 \theta=\sin (2 \pi r-3 \theta)$
$\Rightarrow \sin 4 \theta=-\sin 3 \theta$
$\Rightarrow 2 \sin 2 \theta \cos 2 \theta=-\left[3 \sin \theta-4 \sin ^{3} \theta\right]$
$\Rightarrow 2 \times 2 \sin \theta \cos \theta\left(2 \cos ^{2} \theta-1\right)=-3 \sin \theta+4 \sin ^{3} \theta$
$\Rightarrow \sin \theta\left[8 \cos ^{3} \theta-4 \cos \theta+3-4\left(1-\cos ^{2} \theta\right)\right]=0$
$\Rightarrow 8 \cos ^{3} \theta+4 \cos ^{2} \theta-4 \cos \theta-1=0$
Thus, $\cos \frac{2 \pi}{7}, \cos \frac{4 \pi}{7}$ and $\cos \frac{6 \pi}{7}$ are the roots of the above equation.
$\therefore \cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}=-\frac{1}{2}$