Q.
Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation cos−1(x)−2sin−1(x)=cos−1(2x) is equal to:
cos−1x=2sin−1x=cos−12x cos−1x−2(2π−cos−1x)=cos−12x cos−1x−π+2cos−1x=cos−12x 3cos2x=π+cos−12x...(i) cos(3cos−1x)=cos(π+cos−12x) 4x3−3x=−2x 4x3=x⇒x=0,±21
All satisfy the original equation sum =−21 to +21=0