Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation $\cos ^{-1}(x)-2 \sin ^{-1}(x)=\cos ^{-1}(2 x)$ is equal to:

JEE MainJEE Main 2022Inverse Trigonometric Functions

Solution:

$ \cos ^{-1} x=2 \sin ^{-1} x=\cos ^{-1} 2 x$
$ \cos ^{-1} x-2\left(\frac{\pi}{2}-\cos ^{-1} x\right)=\cos ^{-1} 2 x$
$ \cos ^{-1} x -\pi+2 \cos ^{-1} x =\cos ^{-1} 2 x$
$ 3 \cos ^2 x =\pi+\cos ^{-1} 2 x$...(i)
$ \cos \left(3 \cos ^{-1} x \right)=\cos \left(\pi+\cos ^{-1} 2 x\right) $
$4 x^3-3 x=-2 x$
$4 x^3=x \Rightarrow x=0, \pm \frac{1}{2}$
All satisfy the original equation
$\text { sum }=-\frac{1}{2} \text { to }+\frac{1}{2}=0$