Q.
Consider ϕ(a,b,t)=a4−5a2+b2+5t2−4bt−2t+433 where a,b,t∈R. Given that f(t) and g(b) are the minimum values of ϕ(a,b,t).
If ∫exg(x)dx==ex(Ax2+Bx+C)+D, where D is constant of integration, then (A+B+C)
is equal to
ϕ(a,b,t)=(a2−25)2+(b−2t)2+(t−1)2+1
Now consider E=(b−2t)2+(t−1)2+1=5t2−2t(2b+1)+b2+2
Now g(b)=4a−D=5b2−4b+9=5(b−2)2+5
Hence g(b)=ϕ(a,b,t)∣min.=51(b−2)2+1 ∥lyE=b2−4bt+5t2−2t+2
Hence f(t)=ϕ(a,b,t)∣min.=4a−D=44⋅1(5t2−2t+2)−16t2 =5t2−2t+2−4t2=t2−2t+2=(t−1)2+1
(ii) 51∫ex(x2−4x+9)dx=ex(Ax2+Bx+C)+D
Differentiating both sides w.r.t. x 51ex(x2−4x+9)=ex(2Ax+B)+(Ax2+Bx+C)ex A=51,B=5−6,C=3 A+B+C=51−56+3=2