Q.
Consider $\phi(a, b, t)=a^4-5 a^2+b^2+5 t^2-4 b t-2 t+\frac{33}{4}$ where $a, b, t \in R$. Given that $f(t)$ and $g(b)$ are the minimum values of $\phi( a , b , t )$.
If $\int e^x g(x)dx = = e^x(Ax^2 + Bx + C) + D$, where $D$ is constant of integration, then $(A + B + C)$
is equal to
Integrals
Solution: