Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider f: R+ arrow R such that f(3)=1 for a ∈ R+ and f(x) ⋅ f(y)+f((3/x)) f((3/y))=2 f(x y) ∀ x, y ∈ R+ then f(97) can be
Q. Consider
f
:
R
+
→
R
such that
f
(
3
)
=
1
for
a
∈
R
+
and
f
(
x
)
⋅
f
(
y
)
+
f
(
x
3
)
f
(
y
3
)
=
2
f
(
x
y
)
∀
x
,
y
∈
R
+
then
f
(
97
)
can be
600
176
NTA Abhyas
NTA Abhyas 2022
Report Error
A
1
B
−
1
C
2
D
97
Solution:
Put
x
=
y
=
1
f
2
(
1
)
+
f
2
(
3
)
=
2
f
(
1
)
⇒
(
f
(
1
)
−
1
)
2
=
0
⇒
f
(
1
)
=
1
f
(
x
)
f
(
1
)
+
f
(
x
3
)
f
(
3
)
=
2
f
(
x
)
⇒
f
(
x
)
=
f
(
x
3
)
∀
x
>
0
...
(
1
)
⇒
f
(
x
)
f
(
x
3
)
+
f
(
x
3
)
f
(
x
)
=
2
f
(
3
)
⇒
f
(
x
)
f
(
x
3
)
=
1
....
(
2
)
⇒
from
(
1
)
and
(
2
)
f
2
(
x
)
=
1∀
x
>
0
Put
x
=
y
=
t
f
2
(
t
)
+
f
2
(
t
3
)
=
2
f
(
t
)
or
f
(
t
)
>
0
⇒
f
(
x
)
=
1∀
x
>
0