Q. Consider $f: R^{+} \rightarrow R$ such that $f(3)=1$ for $a \in R^{+}$ and $f(x) \cdot f(y)+f\left(\frac{3}{x}\right) f\left(\frac{3}{y}\right)=2 f(x y) \forall x, y \in R^{+}$ then $f(97)$ can be
NTA AbhyasNTA Abhyas 2022
Solution: