If N=log517⋅log(2−3)5⋅log91(2+3)⋅log713 then N is coprime with
P
2
B
If M=log315006+log515006+log10150012 then M is less than or equal to
Q
3
C
If P=log53.5(1+2+3÷6) then P is twin prime with
R
5
D
If (6x9y−8)−3=xa⋅yb then (2a+4b) is greater or equal to
S
6
T
7
59
115
Continuity and Differentiability
Report Error
Solution:
(A)N=log517⋅log(2−3)5⋅log91(2+3)⋅log713 =(−log57)(log(2−3)5)(21log3(2−3))(−2log73)=1
and 1 is coprime with all natural numbers.
(B)M=6log15003+6log15005+12log150010 =6(log15003+log15005+log1500100)=6log15001500=6
(C) P=log53.5(1+2+63)=log(3.5)1/5(3+21)=5log2727=5 5 is twin prime with 3 or 7 .
(D) (6x9y−8)−3=((x9y−8)1/6)−3=(x9y−8)−1/2=x−29⋅y4=xa⋅yb ∴2a+4b=−9+16=7