Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q.
Column I Column II
A If $N =\log _{\frac{1}{5}} 7 \cdot \log _{(2-\sqrt{3})} 5 \cdot \log _{\frac{1}{9}}(2+\sqrt{3}) \cdot \log _{\sqrt{\frac{1}{7}}} 3$ then $N$ is coprime with P 2
B If $M =\frac{6}{\log _3 1500}+\frac{6}{\log _5 1500}+\frac{12}{\log _{10} 1500}$ then $M$ is less than or equal to Q 3
C If $P =\log _{\sqrt[5]{3.5}}(1+2+3 \div 6)$ then $P$ is twin prime with R 5
D If $\left(\sqrt[6]{x^9 y^{-8}}\right)^{-3}=x^a \cdot y^b$ then $(2 a+4 b)$ is greater or equal to S 6
T 7

Continuity and Differentiability

Solution:

(A)$N=\log _{\frac{1}{5}} 7 \cdot \log _{(2-\sqrt{3})} 5 \cdot \log _{\frac{1}{9}}(2+\sqrt{3}) \cdot \log _{\sqrt{\frac{1}{7}}} 3$
$=\left(-\log _5 7\right)\left(\log _{(2-\sqrt{3})} 5\right)\left(\frac{1}{2} \log _3(2-\sqrt{3})\right)\left(-2 \log _7 3\right)=1$
and 1 is coprime with all natural numbers.
(B)$M=6 \log _{1500} 3+6 \log _{1500} 5+12 \log _{1500} 10 $
$=6\left(\log _{1500} 3+\log _{1500} 5+\log _{1500} 100\right)=6 \log _{1500} 1500=6$
(C) $ P =\log _{\sqrt[5]{3.5}}\left(1+2+\frac{3}{6}\right)=\log _{(3.5)^{1 / 5}}\left(3+\frac{1}{2}\right)=5 \log _{\frac{7}{2}} \frac{7}{2}=5$ 5 is twin prime with 3 or 7 .
(D) $\left(\sqrt[6]{x^9 y^{-8}}\right)^{-3}=\left(\left(x^9 y^{-8}\right)^{1 / 6}\right)^{-3}=\left(x^9 y^{-8}\right)^{-1 / 2}=x^{-\frac{9}{2}} \cdot y^4=x^a \cdot y^b$
$\therefore 2 a+4 b=-9+16=7$