Q.
Column I
Column II
A
If $N =\log _{\frac{1}{5}} 7 \cdot \log _{(2-\sqrt{3})} 5 \cdot \log _{\frac{1}{9}}(2+\sqrt{3}) \cdot \log _{\sqrt{\frac{1}{7}}} 3$ then $N$ is coprime with
P
2
B
If $M =\frac{6}{\log _3 1500}+\frac{6}{\log _5 1500}+\frac{12}{\log _{10} 1500}$ then $M$ is less than or equal to
Q
3
C
If $P =\log _{\sqrt[5]{3.5}}(1+2+3 \div 6)$ then $P$ is twin prime with
R
5
D
If $\left(\sqrt[6]{x^9 y^{-8}}\right)^{-3}=x^a \cdot y^b$ then $(2 a+4 b)$ is greater or equal to
S
6
T
7
Column I | Column II | ||
---|---|---|---|
A | If $N =\log _{\frac{1}{5}} 7 \cdot \log _{(2-\sqrt{3})} 5 \cdot \log _{\frac{1}{9}}(2+\sqrt{3}) \cdot \log _{\sqrt{\frac{1}{7}}} 3$ then $N$ is coprime with | P | 2 |
B | If $M =\frac{6}{\log _3 1500}+\frac{6}{\log _5 1500}+\frac{12}{\log _{10} 1500}$ then $M$ is less than or equal to | Q | 3 |
C | If $P =\log _{\sqrt[5]{3.5}}(1+2+3 \div 6)$ then $P$ is twin prime with | R | 5 |
D | If $\left(\sqrt[6]{x^9 y^{-8}}\right)^{-3}=x^a \cdot y^b$ then $(2 a+4 b)$ is greater or equal to | S | 6 |
T | 7 |
Continuity and Differentiability
Solution: