(A) Let ∣sinx−1∣+∣sinx+1∣=y
if sinx=t⇒∣t−1∣+∣t+1∣=y
if t∈[−1,1]⇒y=2
if t∈(−∞,−1]∪[1,∞)⇒y>2 t∈[−1,1]⇒sinx=t⇒x∈R⇒y=2 t∈(−∞,−1)∪(1,∞)⇒ not possible because sinx∈[−1,1] ∴f(x)=sin−1(2/2)=sin−1(1)=π/2= constant (periodic) ⇒P,Q,R,S
(B) Let ∣x−1∣−∣x−2∣=y if x∈(−∞,1]⇒y=−1 if x∈[1,2]⇒y=[−1,1] if x∈[2,∞)⇒y=1 ∴f(x)=cos−1(∣x−1∣−∣x−2∣) domain is R, range is [0,π];∴P,Q is correct P,Q is correct
(C) Let ∣∣sin−1x−(π/2)∣∣+∣∣sin−1x+(π/2)∣∣=y let sin−1x=t⇒t∈[−2π,2π]<br/>[t−2π]+[t+2π]=y t∈[−2π,2π]⇒y=π ∴f(x)=sin−1(ππ)=2π ∴f(x) is periodic and constant function also range contain only irrational number. ⇒P,R,S ∴f(x) is periodic and constant function also range contain only irrational number. ⇒ P, R, S
(D) Domain is {±1} f(x)=2π+1 for x=±1
range contain only irrational value and also constant function. ⇒P,R,S]