Q.
Column I
Column II
A
$f(x)=\sin ^{-1}\left(\frac{2}{|\sin x-1|+|\sin x+1|}\right)$
P
$f ( x )$ is many one
B
$f ( x )=\cos ^{-1}(| x -1|-| x -2|)$
Q
Domain of $f ( x )$ is $R$
C
$f(x)=\sin ^{-1}\left(\frac{\pi}{\left|\sin ^{-1} x-(\pi / 2)\right|+\left|\sin ^{-1} x+(\pi / 2)\right|}\right)$
R
Range contain only irrational number
D
$f(x)=\cos \left(\cos ^{-1}\left|x[)+\sin ^{-1}(\sin x)-\operatorname{cosec}^{-1}(\operatorname{cosec} x)+\operatorname{cosec}^{-1}\right| x \mid\right.$
S
$f(x)$ is even.
Column I | Column II | ||
---|---|---|---|
A | $f(x)=\sin ^{-1}\left(\frac{2}{|\sin x-1|+|\sin x+1|}\right)$ | P | $f ( x )$ is many one |
B | $f ( x )=\cos ^{-1}(| x -1|-| x -2|)$ | Q | Domain of $f ( x )$ is $R$ |
C | $f(x)=\sin ^{-1}\left(\frac{\pi}{\left|\sin ^{-1} x-(\pi / 2)\right|+\left|\sin ^{-1} x+(\pi / 2)\right|}\right)$ | R | Range contain only irrational number |
D | $f(x)=\cos \left(\cos ^{-1}\left|x[)+\sin ^{-1}(\sin x)-\operatorname{cosec}^{-1}(\operatorname{cosec} x)+\operatorname{cosec}^{-1}\right| x \mid\right.$ | S | $f(x)$ is even. |
Inverse Trigonometric Functions
Solution: