Given that, I=0∫61+x2dx
From Eq. (i), f(x)=1+x21
Now, divide the interval [0,6] into six parts each of width h=66−0=1
The value of f(x) are given below
x
0
1
2
3
4
5
6
f(x)
1
0.5
0.2
0.1
0.0588
0.0385
0.027
The trapezoidal rule is x0∫x0+nhydx=2h[(y0+yn)+2(y1+y2+y3+…+yn−1)] ∴0∫61+x21dx=21[(1+0.027)+2{0.5+0.2+0.1+0.0588+0.0385] =21[1.027+2(0.8973)] =21[1.027+1.7946] =21[2.8216]=1.4108