Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. By trapezoidal rule, the approximate value of the integral $\int\limits_{0}^{6} \frac{d x}{1+x^{2}}$ is

ManipalManipal 2020

Solution:

Given that,
$I=\int\limits_{0}^{6} \frac{d x}{1+x^{2}}$
From Eq. (i), $f(x)=\frac{1}{1+x^{2}}$
Now, divide the interval $[0,6]$ into six parts each of width
$h=\frac{6-0}{6}=1$
The value of $f(x)$ are given below
$x$ $0$ $1$ $2$ $3$ $4$ $5$ $6$
$f(x)$ $1$ $0.5$ $0.2$ $0.1$ $0.0588$ $0.0385$ $0.027$

The trapezoidal rule is
$\int\limits_{x_{0}}^{x_{0}+n h} y d x=\frac{h} {2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+\ldots+ y_{n-1}\right)\right]$
$\therefore \int\limits_{0}^{6} \frac{1}{1+x^{2}} d x=\frac{1}{2}[(1+0.027)+2\{0.5+0.2+0.1+0.0588+0.0385]$
$=\frac{1}{2}[1.027+2(0.8973)]$
$=\frac{1}{2}[1.027+1.7946]$
$=\frac{1}{2}[2.8216]=1.4108$