Let A=(300)(c3010)−(301)(3011)+(302)(3012)−…+(3020)(3030) ∴A=30C0⋅30C10−30C1⋅30C11+30C2⋅30C12 −…+30C3030C30 = Coefficient of x20 in (1+x)30(1−x)30 = Coefficient of x20 in (1−x2)30 = Coefficient of x20 in ∑r=030(−1)r30Cr(x2)r =(−1)1030C10 [for coefficient of x20, put r=10 ] =30C10