Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
binom300 binom3010- binom301 binom3011+ binom302 binom3012+...+ binom3020 binom3030 is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $\binom{30}{0} \binom{30}{10}-\binom{30}{1}\binom{30}{11}+\binom{30}{2}\binom{30}{12}+...+\binom{30}{20}\binom{30}{30}$ is equal to
IIT JEE
IIT JEE 2005
Binomial Theorem
A
$^{30}C_{11}$
44%
B
$^{60}C_{10}$
15%
C
$^{30}C_{10}$
32%
D
$^{65}C_{55}$
9%
Solution:
Let $A=\begin{pmatrix}30 \\ 0\end{pmatrix}\begin{pmatrix}{c}30 \\ 10\end{pmatrix}-\begin{pmatrix}30 \\ 1\end{pmatrix}\begin{pmatrix}30 \\ 11\end{pmatrix}+\begin{pmatrix}30 \\ 2\end{pmatrix}\begin{pmatrix}30 \\ 12\end{pmatrix}-\ldots+\begin{pmatrix}30 \\ 20\end{pmatrix}\begin{pmatrix}30 \\ 30\end{pmatrix}$
$\therefore A={ }^{30} C_{0} \cdot{ }^{30} C_{10}-{ }^{30} C_{1} \cdot{ }^{30} C_{11}+{ }^{30} C_{2} \cdot{ }^{30} C_{12}$
$-\ldots+{ }^{30} C_{30}{ }^{30} C_{30}$
$=$ Coefficient of $x^{20}$ in $(1+x)^{30}(1-x)^{30}$
$=$ Coefficient of $x^{20}$ in $\left(1-x^{2}\right)^{30}$
$=$ Coefficient of $x^{20}$ in $\sum_{r=0}^{30}(-1)^{r^{30}} C_{r}\left(x^{2}\right)^{r}$
$=(-1)^{10}{ }^{30} C_{10} $ [for coefficient of $x^{20}$, put $r=10$ ]
$={ }^{30} C_{10}$