<br/>I=∫02π2tanxdx, Put tanx=t2⇒dx=1+t42tdt<br/>
If x=0⇒t=0 and x=2π⇒t=∞ <br/><br/>I=∫0∞1+t42t2dt=∫0∞1+t4t2+1+t2−1dt<br/>=∫0∞t2+t211+t21dt+∫0∞t2+t211−t21dt<br/>=∫0∞(t−t1)+2d(t−t1)+∫0∞(t+t1)2−2d(t+t1)dt<br/>=21tan−1(2t−t1)∣∣0∞+221In(t+t1+2t+t1−2)0∞<br/>=2π<br/><br/>