Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Assertion : $I=\int_{0}^{\frac{\pi}{2}} \sqrt{\tan x} d x=\frac{\pi}{\sqrt{2}}$
Reason: $\tan x=t^{2}$ makes the integrand in $I$ as a rational function.

Integrals

Solution:

$
I=\int_{0}^{\frac{\pi}{2}} 2 \sqrt{\tan x} d x, \text { Put } \tan x=t^{2} \Rightarrow d x=\frac{2 t d t}{1+t^{4}}
$
If $x=0 \Rightarrow t=0$ and $x=\frac{\pi}{2} \Rightarrow t=\infty$
$
\begin{array}{l}
I=\int_{0}^{\infty} \frac{2 t^{2} d t}{1+t^{4}}=\int_{0}^{\infty} \frac{t^{2}+1+t^{2}-1}{1+t^{4}} d t \\
=\int_{0}^{\infty} \frac{1+\frac{1}{t^{2}}}{t^{2}+\frac{1}{t^{2}}} d t+\int_{0}^{\infty} \frac{1-\frac{1}{t^{2}}}{t^{2}+\frac{1}{t^{2}}} d t \\
=\int_{0}^{\infty} \frac{d\left(t-\frac{1}{t}\right)}{\left(t-\frac{1}{t}\right)+2}+\int_{0}^{\infty} \frac{d\left(t+\frac{1}{t}\right)}{\left(t+\frac{1}{t}\right)^{2}-2} d t \\
=\left.\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{t-\frac{1}{t}}{\sqrt{2}}\right)\right|_{0} ^{\infty}+\frac{1}{2 \sqrt{2}} \operatorname{In}\left(\frac{t+\frac{1}{t}-\sqrt{2}}{t+\frac{1}{t}+\sqrt{2}}\right)_{0}^{\infty} \\
=\frac{\pi}{\sqrt{2}}
\end{array}
$