Area of pentagon =5×21×r×r⋅sin104π=85sin2102πa2sin104π A1=45a2cot102π cos104π=2r2r2+r2−a2 ⇒cos104π=1−2r2a2 ⇒2r2a2=2sin2102π ⇒r2=4sin2102πa2
For decagon , cos102π=2r12r12+r12−(2a)2 ⇒8r12a2=2sin210π ⇒r12=16sin210πa2
Area of decagon, A2=10×21r12sin102π =5⋅16sin210πa2⋅sin102π ⇒A2=85a2cot10π A1:A2=2cot102π:cot10π=2cot5π:cot10π =sin5π2cos5π⋅cos10πsin10π=sin25πcos10πsin52πsin10π=sin25πcos10πcos10πsin10π=1−(45+1)245−1=2:5