Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A regular pentagon and a regular decagon have the same perimeter, the ratio of their areas is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. A regular pentagon and a regular decagon have the same perimeter, the ratio of their areas is
Trigonometric Functions
A
$3: \sqrt{5}$
B
$1: \sqrt{5}$
C
$2: \sqrt{5}$ .
D
$2: \sqrt{5}$
Solution:
Area of pentagon $=5 \times \frac{1}{2} \times r \times r \cdot \sin \frac{4 \pi}{10}=\frac{5}{8} \frac{a^2 \sin \frac{4 \pi}{10}}{\sin ^2 \frac{2 \pi}{10}}$
$A_1=\frac{5}{4} a^2 \cot \frac{2 \pi}{10}$
$\cos \frac{4 \pi}{10}=\frac{r^2+r^2-a^2}{2 r^2} $
$ \Rightarrow \cos \frac{4 \pi}{10}=1-\frac{a^2}{2 r^2} $
$\Rightarrow \frac{a^2}{2 r^2}=2 \sin ^2 \frac{2 \pi}{10} $
$\Rightarrow r^2=\frac{a^2}{4 \sin ^2 \frac{2 \pi}{10}}$
For decagon , $\cos \frac{2 \pi}{10}=\frac{r_1^2+r_1^2-\left(\frac{a}{2}\right)^2}{2 r_1^2}$
$ \Rightarrow \frac{a^2}{8 r_1^2}=2 \sin ^2 \frac{\pi}{10}$
$ \Rightarrow r_1^2=\frac{a^2}{16 \sin ^2 \frac{\pi}{10}}$
Area of decagon, $A_2=10 \times \frac{1}{2} r_1^2 \sin \frac{2 \pi}{10}$
$ =5 \cdot \frac{a^2}{16 \sin ^2 \frac{\pi}{10}} \cdot \sin \frac{2 \pi}{10}$
$ \Rightarrow A_2=\frac{5}{8} a^2 \cot ^{\frac{\pi}{10}}$
$A_1: A_2=2 \cot \frac{2 \pi}{10}: \cot \frac{\pi}{10}=2 \cot \frac{\pi}{5}: \cot \frac{\pi}{10}$
$=\frac{2 \cos \frac{\pi}{5}}{\sin \frac{\pi}{5}} \cdot \frac{\sin \frac{\pi}{10}}{\cos \frac{\pi}{10}}=\frac{\sin \frac{2 \pi}{5} \sin \frac{\pi}{10}}{\sin ^2 \frac{\pi}{5} \cos \frac{\pi}{10}}=\frac{\cos \frac{\pi}{10} \sin \frac{\pi}{10}}{\sin ^2 \frac{\pi}{5} \cos \frac{\pi}{10}}=\frac{\frac{\sqrt{5}-1}{4}}{1-\left(\frac{\sqrt{5}+1}{4}\right)^2}=2: \sqrt{5}$