Let A(x1,y1),B(x2,y2) and C(x3,y3) be the vertices of ΔABC and let lx+my+n=0 be the equation of the line. If P divides BC in the ratio λ:1, then the coordinates of P are (λ+1λx3+x2,λ+1λy3+y2)
Also, as P lies on L, we have l(λ+1λx3+x2)+m(λ+1λy3+y2)+n=0 ⇒−lx3+my3+nlx2+my2+n=λ=PCBP…(i)
Similarly, we obtain QACQ=−lx1+my1+nlx3+my3+n…(ii)
and RBAR=−lx2+my2+nlx1+my1+n…(iii)
On multiplying Eqs. (i), (ii) and (iii), we get PCBP⋅QACQ⋅RBAR=−1