1+x2f(x)=1+0∫x1+t2(f(t))2dt
Differentiating w.r.t. x (1+x2)2(1+x2)f′(x)−2xf(x)=(1+x2)f2(x)⇒y21dxdy−(1+x22x)y1=1
Put −y1=t ∴dxdt+(1+x22x)t=1,
IF =e∫1+x22xdx=1+x2 ∴ Solution is −y(1+x2)=x+3x3+c
Now f(0)=1 ∴c=−1⇒y=x3+3x−3−3(1+x2)=f(x) f(−3)=33+3×3−3−3(1+32)=1310