Q. A continuous function $f:R \rightarrow R$ satisfies the differential equation $f\left(x\right)=\left(1 + x^{2}\right)\left[1 + \int\limits _{0}^{x} \frac{\left( f \left( t \right)\right)^{2}}{1 + t^{2}} d t\right],$ then $f\left(- 3\right)$ is
NTA AbhyasNTA Abhyas 2022
Solution: