Thank you for reporting, we will resolve it shortly
Q.
When a potential difference of $10^3 V$ is applied between $A$ and $B$ , a charge of $0.75 \, mC$ is stored in the system of capacitors as shown.The value of $C$ is $(in\, \mu F)$
KCETKCET 1999Electrostatic Potential and Capacitance
Solution:
In the given circuit, $2 \mu F$ and $2 \mu F$ capacitors are in series
$C_{S}=\frac{2 \times 2}{2+2}=1 \,\mu F$
equivalent circuit will be
Now $C \mu F$ and $1\, \mu F$ are in parallel which is in series with $1 \mu F$
$ \therefore C_{\text {eff }}=\frac{(C+1) \times 1}{(C+1)+1}=\frac{C+1}{C+2}$
Given, $q=0.75 \times 10^{-3}\, C =750 \times 10^{-6} \,C ,\, V=10^{3} \,V$
So, $C_{\text {eff }}=\frac{q}{V}$
$\Rightarrow \frac{C+1}{C+2}=\frac{750 \times 10^{-6}}{10^{3}}$
$=750 \times 10^{-3}\, F =0.75\, \mu F$
$\Rightarrow 0.75=\frac{C+1}{C+2}$
$\Rightarrow \frac{3}{4}=\frac{C+1}{C+2}$
$\Rightarrow 3 C+6=4 C+4 $
$\Rightarrow C=2 \,\mu F$