Thank you for reporting, we will resolve it shortly
Q.
Two forces P and Q have a resultant R and the resolved part of R in the direction of P is of magnitude Q. Then the angle between the forces is:
Bihar CECEBihar CECE 2001
Solution:
Let $\alpha$ be the angle between the force and their resultant $R$ makes an angle $\theta$ with the direction of $P$.
Then Resolved part of $R$ in the direction of $P$
$=O M=R \cos \theta=Q$ (given)
$\therefore Q=O M=P+Q \cos \alpha$
$\Rightarrow Q(1-\cos \alpha)=P$
$\Rightarrow Q\left[2 \sin ^{2}\left(\frac{\alpha}{2}\right)\right]=P$
$\Rightarrow \sin ^{2}\left(\frac{\alpha}{2}\right)=\frac{P}{2 Q}$
$\Rightarrow \sin \left(\frac{\alpha}{2}\right)=\left(\frac{P}{2 Q}\right)^{1 / 2}$
$\Rightarrow \left(\frac{\alpha}{2}\right)=\sin ^{-1}\left(\frac{P}{2 Q}\right)^{1 / 2}$
Hence, $\alpha=2 \sin ^{-1}\left(\frac{P}{2 Q}\right)^{1 / 2}$