Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The symmetric part of the matrix $A =\begin{bmatrix} {1}&{2} &{4}\\ {6}&{8}& {2} \\ {2}&{-2}&{7}\\ \end{bmatrix} $ is

KCETKCET 2014Matrices

Solution:

Given, matrix $A= \begin{bmatrix}1 & 2 & 4 \\ 6 & 8 & 2 \\ 2 & -2 & 7\end{bmatrix}$
$\therefore $ Symmetric part of $A=\frac{1}{2}\left[A+A'\right]$
$=\frac{1}{2}\left\{\begin{bmatrix}1 & 2 & 4 \\ 6 & 8 & 2 \\ 2 & -2 & 7\end{bmatrix}+ \begin{bmatrix}1 & 6 & 2 \\ 2 & 8 & -2 \\ 4 & 2 & 7\end{bmatrix}\right\}$
$=\frac{1}{2}\left\{\begin{bmatrix}2 & 8 & 6 \\ 8 & 16 & 0 \\ 6 & 0 & 14\end{bmatrix}\right\}= \begin{bmatrix}1 & 4 & 3 \\ 4 & 8 & 0 \\ 3 & 0 & 7\end{bmatrix}$