Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The peak value of an alternating e.m.f. $E=E_{0} \sin \omega t$ is $10$ volt and its frequency is $50 \,Hz$. At a time $t=\frac{1}{600 \,s }$, the instantaneous value of the e.m.f. is

Alternating Current

Solution:

$E=E_{0} \sin \omega t, $
$E_{0}=10\, V$
$v=50 \,Hz , $
$t=\frac{1}{600}$
$E=10 \sin (2 \pi) \times 50 \times \frac{1}{600}$
$=10 \sin \frac{\pi}{6}=10\left(\frac{1}{2}\right)$
$=5$ volt