Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The order of the differential equation obtained by eliminating arbitrary constants in the family of curves c1y = (c2 +c3 )ex+c4 is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The order of the differential equation obtained by eliminating arbitrary constants in the family of curves $c_1y = (c_2 +c_3 )e^{x+c_4}$ is
KCET
KCET 2020
Differential Equations
A
1
39%
B
2
19%
C
3
18%
D
4
23%
Solution:
$\left(y = [(\frac{C_2 + C_3}{C_1})e^{C_4}]e^x = A e^x,\right)$
where $A = \left((\frac{C_2 + C_3}{C_1})e^{C_4}\right)$
Order = Number of independent arbitrary constants $= 1$