Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of elements in the set n ∈ 1,2,3, ldots ldots, 100 .(11)n > (10)n+(9)n is .
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The number of elements in the set $\{n \in\{1,2,3, \ldots \ldots, 100\}$ $\left.(11)^{n} > (10)^{n}+(9)^{n}\right\}$ is _______.
JEE Main
JEE Main 2021
Principle of Mathematical Induction
A
B
C
D
Solution:
$11^{n}>10^{n}+9^{n}$
$\Rightarrow 11^{n}-9^{n}>10^{n}$
$\Rightarrow(10+1)^{n}-(10-1)^{n}>10^{n}$
$\Rightarrow\left\{{ }^{n} C_{1} \cdot 10^{n-1}+{ }^{n} C_{3} 10^{n-0}+{ }^{n} C_{5} 10^{n-5}+\ldots \ldots\right\}>10^{n}$
$\Rightarrow 2 n \cdot 10^{n-1}+2\left\{{ }^{n} C_{3} 10^{n-3}+{ }^{n} C_{5} 10^{n-5}+\ldots \ldots .\right\}>10^{n}$ .... (1)
For $n=5 $
$10^{5}+2\left\{{ }^{5} C_{3} 10^{2}+{ }^{5} C_{5}\right\}>10^{5}$ (True)
For $ n=6,7,8, \ldots \ldots .100$
$2 n 10^{n-1} > 10^{n} $
$\Rightarrow 2 n 10^{n-1}+2\left\{{ }^{n} C_{3} 10^{n-3}+{ }^{n} C_{5} 10^{n-5}+\ldots \ldots . .3 > 10^{\circ}\right. $
$\Rightarrow 11^{n}-9^{n} > 10^{n} $ For $ n=5,6,7, \ldots \ldots .100$
For $ n=4, $ Inequality (1) is not satisfied
$\Rightarrow $ Inequality does not hold good for
$ N=1,2,3,4$
So, required number of elements $=96$