Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The minimum phase difference between two SHMs, $y_{1}=\frac{1}{2}\sin\omega t+\frac{\sqrt{3}}{2}\cos\omega t$ and $y_{2}=\sin\omega t+\cos\omega t$ is,

NTA AbhyasNTA Abhyas 2022

Solution:

$y_1=A_{\text {net }} \sin \omega t+\phi_1$
$A_{\text {net }}=\sqrt{\frac{1}{2}^2+{\frac{\sqrt{3}^2}{2}}^2}=1$
$\Rightarrow \tan \phi_1=\frac{b}{a}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} $
$\Rightarrow \tan \phi_1=\sqrt{3} $
$\Rightarrow \phi_1=\frac{\pi}{3}$
$y_2=A_{\text {net }} \sin \omega t+\phi_2$
$\Rightarrow \tan \phi_2=\frac{1}{1}=45^{\circ}$
$\Rightarrow \phi_2=\frac{\pi}{4}$
$\Delta \phi=\phi_1-\phi_2$
$\Rightarrow \Delta \phi=\frac{\pi}{3}-\frac{\pi}{4}$
$\Delta \phi=\frac{\pi}{12}$