Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The expression sin 27 ° cos 57 ° sin 87 ° simplifies to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The expression $sin 27 ^\circ cos 57 ^\circ sin 87 ^\circ $ simplifies to
NTA Abhyas
NTA Abhyas 2020
A
$\frac{sin 9 ^\circ }{4}$
0%
B
$\frac{cos 9 ^\circ }{4}$
100%
C
$\frac{sin 9 ^\circ }{2}$
0%
D
$\frac{cos 9 ^\circ }{2}$
0%
Solution:
$sin 27 ^\circ cos 57 ^\circ sin \left(90 ^\circ - 3 ^\circ \right)$
$=\frac{1}{2}sin 27 ^\circ \left(2 cos 57 ^\circ cos 3 ^\circ \right)$
$=\frac{1}{2}sin 27 ^\circ \left(cos 60 ^\circ + cos 54 ^\circ \right)$
$=\frac{1}{2}sin 27^\circ \left(\frac{1}{2}\right)+\frac{1}{2}sin27^\circ sin36^\circ $
$=\frac{1}{4}sin 27 ^\circ + \frac{1}{4} \left(2 sin 27 ^\circ sin 36 ^\circ \right)$
$=\frac{1}{4}sin 27 ^\circ + \frac{1}{4} \left(cos 9 ^\circ - cos 63 ^\circ \right)$
$=\frac{1}{4}sin 27 ^\circ + \frac{1}{4} cos 9 ^\circ -\frac{1}{4}sin 27 ^\circ $
$=\frac{1}{4}cos 9 ^\circ $