Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The expression $sin 27 ^\circ cos ⁡ 57 ^\circ sin ⁡ 87 ^\circ $ simplifies to

NTA AbhyasNTA Abhyas 2020

Solution:

$sin 27 ^\circ cos ⁡ 57 ^\circ sin ⁡ \left(90 ^\circ - 3 ^\circ \right)$
$=\frac{1}{2}sin 27 ^\circ \left(2 cos ⁡ 57 ^\circ cos ⁡ 3 ^\circ \right)$
$=\frac{1}{2}sin 27 ^\circ \left(cos ⁡ 60 ^\circ + cos ⁡ 54 ^\circ \right)$
$=\frac{1}{2}sin 27^\circ \left(\frac{1}{2}\right)+\frac{1}{2}sin⁡27^\circ sin⁡36^\circ $
$=\frac{1}{4}sin 27 ^\circ + \frac{1}{4} \left(2 sin ⁡ 27 ^\circ sin ⁡ 36 ^\circ \right)$
$=\frac{1}{4}sin 27 ^\circ + \frac{1}{4} \left(cos ⁡ 9 ^\circ - cos ⁡ 63 ^\circ \right)$
$=\frac{1}{4}sin 27 ^\circ + \frac{1}{4} cos ⁡ 9 ^\circ -\frac{1}{4}sin ⁡ 27 ^\circ $
$=\frac{1}{4}cos 9 ^\circ $