Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The curve, with the property that the projection of the ordinate on the normal is constant and has a length equal to ' $a$ ', is

Differential Equations

Solution:

$\text { Ordinate }= PM . \text { Let } P \equiv( x , y ) [ T / S ] $
$ \text { Projection of ordinate on normal }= PN$
$PN = PM \cos \theta= a \text { (given) }$
$\therefore \frac{ y }{\sqrt{1+\tan ^2 \theta}}= a \Rightarrow y = a \sqrt{1+\left( y _1\right)^2} $
$\Rightarrow \frac{ dy }{ dx }=\frac{\sqrt{ y ^2- a ^2}}{ a } \Rightarrow \int \frac{ ady }{\sqrt{ y ^2- a ^2}}=\int dx \Rightarrow a \ln \left| y +\sqrt{ y ^2- a ^2}\right|= x + c$

Solution Image