Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The average depth of Indian ocean is about $3000\, m$. Find the fractional compression $\frac{\Delta V}{V}$ of water of the bottom of the ocean. Given, bulk modulus of water is $2.2 \times 10^{9} Nm ^{-2}$ and density of water $=1000\, kgm ^{-3}$.

Mechanical Properties of Solids

Solution:

The increase in pressure is $\Delta p=\rho g h$
Or $ \Delta p=10^{3} \times 9.8 \times 3000=29.4 \times 10^{6} Nm ^{-2}$
The volume strain $=\frac{\Delta V}{V}=\frac{\Delta p}{B}$
$=\frac{29.4 \times 10^{6}}{2.2 \times 10^{9}}=1.36$