Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The area of triangle formed by the lines $x-y=0,x+y=0$ and any tangent to the hyperbola $x^{2}-y^{2}=16$ is equal to

NTA AbhyasNTA Abhyas 2020

Solution:

Equation of the tangent to the hyperbola $x^{2}-y^{2}=16$ in parametric
form is
$4 x \sec \phi-4 y \tan \phi=16$
$\Rightarrow x \sec \phi-y \tan \phi=4$
Solving with $y=x$ and $y=-x,$ we get,
$A(4(\sec \phi+\tan \phi), 4(\sec \phi+\tan \phi))$
$B(4(\sec \phi-\tan \phi), 4(\tan \phi-\sec \phi))$
$\therefore $ Area bounded by $\Delta A O B$ $=\mid \frac{1}{2}\left(16\left(\tan ^{2} \phi-\sec ^{2} \phi\right)-16\left(\sec ^{2} \phi-\tan ^{2} \phi\right)\right)$
$=\left|\frac{1}{2}(-16-16)\right|=16 sq.$ units