Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
tan 9°- tan 27°- tan 63°+ tan 81°=
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}=$
AP EAMCET
AP EAMCET 2020
A
1
B
2
C
3
D
4
Solution:
$\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$
$=\tan 81^{\circ}+\tan 9^{\circ}-\left(\tan 63^{\circ}+\tan 27^{\circ}\right)$
$=\cot 9^{\circ}+\tan 9^{\circ}-\left(\cot 27^{\circ}+\tan 27^{\circ}\right)$
$=\frac{\cos ^{2} 9^{\circ}+\sin ^{2} 9^{\circ}}{\sin 9^{\circ} \cdot \cos 9^{\circ}}-\frac{\cos ^{2} 27^{\circ}+\sin ^{2} 27^{\circ}}{\sin 27 \cdot \cos 27}$
$=\frac{1}{\sin 9^{\circ} \cdot \cos 9^{\circ}}-\frac{1}{\sin 27^{\circ} \cdot \cos 27^{\circ}}$
$=\frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}}=2 \frac{\sin 54-\sin 18}{\sin 54 \cdot \sin 18}$
$=\frac{4 \cos 36 \cdot \sin 18}{\cos 36 \sin 18}=4$