Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Number of integers in the range of function $f(x)=\log _{\frac{1}{2}}\left(x-\frac{1}{2}\right)+\log _2\left(\sqrt{4 x^2-4 x+1}\right)$ is (are)

Relations and Functions - Part 2

Solution:

$ f(x)=\log _2\left(x-\frac{1}{2}\right)^{-1}+\log _2\left(\sqrt{(2 x-1)^2}\right) $
$f(x)=-\log _2\left(x-\frac{1}{2}\right)+\log _2(2 x-1) $
$f(x)=-\log _2\left(x-\frac{1}{2}\right)+\log _2\left(2\left(x-\frac{1}{2}\right)\right) $
$f(x)=-\log _2\left(x-\frac{1}{2}\right)+\log _2 2+\log _2\left(x-\frac{1}{2}\right) $
$f(x)=1 \text {, so the range of } f(x) \text { is }\{1\} $