Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Match the rate expressions in LIST-I for the decomposition of $X$ with the corresponding profiles provided in LIST-II. $X _{ s }$ and $k$ constants having appropriate units.
LIST I LIST II
I $\text { rate }=\frac{ k [ X ]}{ X _{ s }+[ X ]}$
under all possible initial concentration of $X$
i image
II $ \text { rate }=\frac{ k [ X ]}{ X _{ s }+[ X ]} $
where initial concentration of $X$ are much less than $X _s$
ii image
III $ \text { rate }=\frac{ k [ X ]}{ X _{ s }+[ X ]} $
where initial concentration of $X$ are much higher than $X _{ s }$
iii image
IV $ \text { rate }=\frac{ k [ X ]^2}{ X _{ s }+[ X ]} $ ,br/>where initial concentration of $X$ is much higher than $X _{ s }$ iv image
v image

JEE AdvancedJEE Advanced 2022

Solution:

(I)$\text { rate }=\frac{ k [ x ]}{ x _{ s }+[ x ]}=\frac{ k }{\frac{ x _{ s }}{[ x ]}+1}$
$ \text { If }[ x ] \rightarrow \infty \Rightarrow \text { rate } \rightarrow k \Rightarrow \text { order }=0 $
$ \Rightarrow ( I )-( R ),( P )$
(II)$ {[ x ]< < x _{ s } \Rightarrow \text { rate }=\frac{ k [ x ]}{ x _{ s }} \Rightarrow \text { order }=1} $
$ \Rightarrow \text { (II) }-( Q ), \text { (T) }$
(III) $[ x ]>> x _{ s } \Rightarrow$ rate $= k \Rightarrow$ order $=0$
$\Rightarrow ( III )-( P ),( S )$
(IV)$ \text { rate }=\frac{ k [ x ]^2}{ x _{ s }+[ x ]} $
$ {[ x ]>> x _{ s } \Rightarrow \text { rate }= k [ x ] } $
$ \Rightarrow( IV )-( Q ),( T )$