Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Match the following continuous series given in Column I with their corresponding mean deviations about mean or median in Column II and choose the correct option from the codes given below.Mathematics Question Image

Statistics

Solution:

A .
Class $f_i$ Mid value $(x_i)$ $d_i = \frac{x_i-A}{h} A = 350, h = 100$ $f_i d_i |$ |x_i - \bar{x}|$ $f_i |x_i - \bar{x}|$
0- 100 4 50 -3 -12 308 1232
100-200 8 150 -2 -16 208 1664
200-300 9 250 -1 -9 108 972
300-400 10 350 0 0 8 80
400-500 7 450 1 7 92 644
500-600 5 550 2 10 192 960
600-700 4 650 3 12 292 1168
700-800 3 750 4 12 392 1176
Total $\Sigma f_i = 50$ 4 7896

Mean $ \bar{x} =A+\frac{\Sigma f d_i}{\Sigma f_i} \times h=350+\frac{4}{50} \times 100=350+8 $
$\bar{x} =358$
Mean deviation about the mean
$=\frac{\Sigma f_i\left|x_i-\bar{x}\right|}{\Sigma f_i}=\frac{7896}{50}=157.92$
Class $f_i$ Mid value $(x_i)$ $d_i = \frac{x_i-A}{h} A = 350, h = 100$ $f_i d_i |$ |x_i - \bar{x}|$ $f_i |x_i - \bar{x}|$
95- 105 9 100 -3 -27 25.3 227.7
105-115 13 110 -2 -26 15.3 198.9
115-125 26 120 -1 -26 5.3 137.8
125-135 30 130 0 0 4.7 141.0
135-145 12 140 1 12 14.7 176.4
145-155 10 150 2 20 24.7 247.0
Total 100 -47 1128.8

Mean $(\bar{x})=A+\frac{\Sigma f_i d_i}{\Sigma f_i} \times h $
$= 130+\frac{(-47)}{100} \times 10=130-4.7=125.3$
Mean deviation about mean $=\frac{\Sigma f_i\left|x_i-\bar{x}\right|}{\Sigma f_i}=\frac{1128.8}{100} $
$=11.288$
Class $f_i$ $cf$ Mid value $(x_i)$ $|x_i - M|$ $f_i |x_i - M|$
0 - 10 6 6 5 |5 - 27.86|= 22.86 137.16
10 - 20 8 (14)C 15 |15 - 27.86| = 12.86 102.88
(20-30) (14) 28 25 |25-27.86| = 2.86 40.04
30 - 40 16 44 35 |35-27.86| = 7.14 114.24
40 - 50 4 48 45 |45 - 27.86| = 17.14 68.56
50 - 60 2 50 55 |55 - 27.86| = 27.14 54.28
Total $\Sigma f_i = 50$ 517.16

Here, $ \frac{N}{2} =\frac{50}{2}=25 $
$ \Rightarrow C =14, f=14, I=20, h=10 $
Median $(M) =I+\frac{\frac{N}{2}-C}{f} \times h $
$ =20+\frac{25-14}{14} \times 10 $
$ =20+\frac{11 \times 10}{14} $
$=20+7.86=27.86$
$ \therefore $ Mean deviation about median $= \frac{\Sigma f_i\left|x_i-M\right|}{\Sigma f_i}$
$=\frac{517.16}{50}=10.34$