Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \displaystyle\lim _{n \rightarrow \infty} n \sin \frac{2 \pi}{3 n} \cdot \cos \frac{2 \pi}{3 n}$ is

KCETKCET 2010Limits and Derivatives

Solution:

$\displaystyle \lim _{n \rightarrow \infty} n \cdot \sin \frac{2 \pi}{3 n} \cdot \cos \frac{2 \pi}{3 n}$
$=\displaystyle\lim _{n \rightarrow \infty} n\left\{\frac{\left(\sin \frac{2 \pi}{3 n}\right)}{\left(\frac{2 \pi}{3 n}\right)}\right\} \cdot \cos \frac{2 \pi}{3 n} \times \frac{2 \pi}{3 n}$
$=(1) \cdot \cos \left(0^{\circ}\right) \times \frac{2 \pi}{3}$
$\left\{\because \displaystyle\lim _{\theta \rightarrow \infty} \frac{\sin 1 / \theta}{1 / \theta}=1\right\}$
$=1 \cdot \frac{2 \pi}{3}=\frac{2 \pi}{3}$