Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Light of wavelength $4000 A^0$ is incident on a metal surface of work function $2.5\, e V$. Given $h=6.62 \times 10^{-34} \,Js,\, c = 3 \times 10^8 m/s,$ the maximum KE of photoelectrons emitted and the corresponding stopping potential are respectively

Dual Nature of Radiation and Matter

Solution:

According to given question, Maximum kinetic energy is $K$. $E$.,
$
\begin{array}{l}
\frac{ hC }{\lambda}- W = K . E . \\
\Rightarrow K . E .=4.14 \times 10^{-15} \times 3 \times 10^{8}-2.5 \\
\Rightarrow K . E .=0.605 eV \\
\Rightarrow K . E . \approx 0.6 eV
\end{array}
$
So,
From definition of stopping potential,
K.E. $= e \times V _{0}$ [Where $V _{0}$ is stopping potential]
$0.6 eV = eV _{0}$
$\Rightarrow V _{0}=0.6 volts$