Q.
Let $z \in C$ satisfies the equation $\left|\frac{ z +\overline{ z }}{2 \operatorname{Re}( z )}\right|-| z |=\frac{2}{|\overline{ z }|}-\left|\frac{ z -\overline{ z }}{\operatorname{Im}( z )}\right|$.
If locus of $z$ is curve $C _1$ or $C _2\left( C _1\right.$ lies in $\left.C _2\right)$ and chord $AB$ of curve $C _2$ touches $C _1$ and from $A$ and $B$ two tangents are drawn to $C_1$ which meet at $C$ lying on $C_2$ and if area of $\triangle A B C=\sqrt{k}$, then find the value of $\left[\frac{k}{4}\right]$.
[Note: $[y]$ denotes greatest integer less than or equal to $y$.
Complex Numbers and Quadratic Equations
Solution: