Q. Let $f$ be a twice differentiable function defined on $R$ such that $f (0)=1, f'(0)=2$ and $f'(x)\neq 0$ for all $x \in R$. If $\left|\begin{array}{cc}f(x) & f'(x) \\ f'(x) & f''(x)\end{array}\right|=0,$ for all $x \in R,$ then the value of $f (1)$ lies in the interval:
Solution: