Q. Let $A=\begin{bmatrix}1 & -1 \\ 2 & \alpha\end{bmatrix}$ and $B=\begin{bmatrix}\beta & 1 \\ 1 & 0\end{bmatrix}, \alpha, \beta \in R$. Let $\alpha_1$ be the value of $\alpha$ which satisfies $( A + B )^2= A ^2+\begin{bmatrix}2 & 2 \\ 2 & 2\end{bmatrix}$ and $\alpha_2$ be the value of $\alpha$ which satisfies $(A+B)^2=B^2$. Then $\left|\alpha_1-\alpha_2\right|$ is equal to
Solution: